Respuesta :

Answer:

[tex]2x(x+3)(x + 4)[/tex]

Step-by-step explanation:

To factor [tex]2x^3+14x^2+24x[/tex]

First, factor out the common term [tex]2x[/tex]:

[tex]\implies 2x(x^2+7x+12)[/tex]

Now factor the expression in the parantheses:  [tex]x^2+7x+12[/tex]

Find two numbers that multiply to 12 and sum to 7:  3 and 4

Rewrite [tex]7x[/tex] as the sum of these 2 numbers:

[tex]\implies x^2+3x + 4x+12[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies x(x+3) + 4(x+3)[/tex]

Factor out the common term [tex](x+3)[/tex]:

[tex]\implies (x+3)(x + 4)[/tex]

Therefore, the final factorization of the polynomial is:

[tex]\implies 2x (x+3)(x + 4)[/tex]

Let's factor up

  • 2x³+14x2+24x
  • 2x(x²+7x+12)
  • 2x(x²+4x+3x+12)
  • 2x(x+4)(x+3)

So

  • Length=2x
  • Breadth=x+3
  • Height=x+4

[Can be interchanged]