D. 6.
We have been given graph of a function. We are asked to find the average rate of change of our given function for the interval from [tex]x=-4[/tex] to [tex]x=-2[/tex].
We will use formula [tex]Average[/tex] [tex]rate[/tex] [tex]of[/tex] [tex]change[/tex] [tex]=\frac{f(b)-f(a)}{b-a}[/tex] to solve our given problem.
[tex]Average[/tex] [tex]rate[/tex] [tex]of[/tex] [tex]change[/tex] [tex]=\frac{f(-2)-f(-4)}{-2--4}[/tex]
[tex]Average[/tex] [tex]rate[/tex] [tex]of[/tex] [tex]change[/tex] [tex]=\frac{6--6}{-2+4}[/tex]
[tex]Average[/tex] [tex]rate[/tex] [tex]of[/tex] [tex]change[/tex] [tex]=\frac{6+6}{2}[/tex]
[tex]Average[/tex] [tex]rate[/tex] [tex]of[/tex] [tex]change[/tex] [tex]=\frac{12}{2}[/tex]
[tex]Average[/tex] [tex]rate[/tex] [tex]of[/tex] [tex]change[/tex] [tex]=6[/tex]
Therefore, the average rate of change for our given function on given interval would be 6 and option B is the correct choice.