The volume V of a given mass of gas varies
directly as the temperature T and inversely as the
pressure P. If V = 341.0 in 3 when T = 310° and
P=10 lb/in.2, what is the volume when T= 120°
and P= 15 lb/in.2?

Respuesta :

Apply combine gas law

[tex]\\ \rm\dashrightarrow \dfrac{P1V1}{T1}=\dfrac{P2V2}{T2}[/tex]

[tex]\\ \rm\dashrightarrow \dfrac{10(341)}{310}=\dfrac{15V2}{120}[/tex]

[tex]\\ \rm\dashrightarrow 11=\dfrac{V2}{8}[/tex]

[tex]\\ \rm\dashrightarrow V2=88in^3[/tex]

Nayefx

Answer:

88 in³

Step-by-step explanation:

we are given that the volume V of a given mass of gas varies directly as the temperature T and inversely as the pressure P.

Condition-1:

The volume V of a given mass of gas varies directly as the temperature T , thus

[tex]V\propto T\\\implies V=kT[/tex]

Condition-1:

The volume V of a given mass of gas varies inversely as the pressure P, therefore,

[tex]V\propto 1/P\\\implies V=k\cdot 1/P[/tex]

combining 1 and 2 yields

[tex]V\propto k\cdot T/P[/tex]

Case-1:

  • V = 341.0 in³
  • T = 310°
  • P=10 lb/in²

To find:

  • k

Finding the constant of proportionality

[tex]341= k\cdot 310/10\\\implies k=341\times 10/310 \\ \implies \boxed{k=11}[/tex]

Case-1:

To find:

  • V

when:

  • T = 120°
  • P=15 lb/in²
  • k=11

Finding the volume:

[tex]V= 11\times 120/15\\\implies V=11\times 8 \\ \implies \boxed{V=88}[/tex]