Respuesta :
Apply combine gas law
[tex]\\ \rm\dashrightarrow \dfrac{P1V1}{T1}=\dfrac{P2V2}{T2}[/tex]
[tex]\\ \rm\dashrightarrow \dfrac{10(341)}{310}=\dfrac{15V2}{120}[/tex]
[tex]\\ \rm\dashrightarrow 11=\dfrac{V2}{8}[/tex]
[tex]\\ \rm\dashrightarrow V2=88in^3[/tex]
Answer:
88 in³
Step-by-step explanation:
we are given that the volume V of a given mass of gas varies directly as the temperature T and inversely as the pressure P.
Condition-1:
The volume V of a given mass of gas varies directly as the temperature T , thus
[tex]V\propto T\\\implies V=kT[/tex]
Condition-1:
The volume V of a given mass of gas varies inversely as the pressure P, therefore,
[tex]V\propto 1/P\\\implies V=k\cdot 1/P[/tex]
combining 1 and 2 yields
[tex]V\propto k\cdot T/P[/tex]
Case-1:
- V = 341.0 in³
- T = 310°
- P=10 lb/in²
To find:
- k
Finding the constant of proportionality
[tex]341= k\cdot 310/10\\\implies k=341\times 10/310 \\ \implies \boxed{k=11}[/tex]
Case-1:
To find:
- V
when:
- T = 120°
- P=15 lb/in²
- k=11
Finding the volume:
[tex]V= 11\times 120/15\\\implies V=11\times 8 \\ \implies \boxed{V=88}[/tex]