Respuesta :

Answer:

a = 7, b = 9, c = 4

Step-by-step explanation:

Hope it helps you in your learning process.

[tex]7^{\frac{9}{4}}= \sqrt[4]7^{9}\implies\sqrt[c]a^{b}[/tex]

On comparing, we find:

a = 7, b = 9, c = 4

Answer:

[tex] \sf \: a = 7,\: b = 9,\: c = 4[/tex]

Step-by-step explanation:

[tex] {7}^{\frac{9}{4}} [/tex] we have to write in the form [tex] \sf \: {}^{c} \sqrt{ {a}^{b} } [/tex]

[tex] {a}^{ \frac{1}{b} } = {}^{b} \sqrt{a} [/tex]

[tex] {a}^{b} = {a}^{b}[/tex]

from there we can write.

[tex] {7}^{3 \times \frac{1}{4} } = {}^{4} \sqrt{ {7}^{9} } [/tex]

Comparing with [tex] \sf \: {}^{c} \sqrt{ {a}^{b} } [/tex]

c = 4 , b = 9, a = 7