to get the equation of any straight line we simply need two points off of it, hmmm let's use the points in the picture below for "a".
[tex](\stackrel{x_1}{-4}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-3}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-3}-\stackrel{y1}{3}}}{\underset{run} {\underset{x_2}{2}-\underset{x_1}{(-4)}}}\implies \cfrac{-6}{2+4}\implies \cfrac{-6}{6}\implies -1[/tex]
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{-1}(x-\stackrel{x_1}{(-4)}) \\\\\\ y-3=-1(x+4)\implies y-3=-x-4\implies y=-x-1[/tex]