Select the correct answer.
Find the solution(s) for x in the equation below.

Answer:
B(x=4,x=5)
Step-by-step explanation:
Here,
[tex]x^{2} -9x+20=0[/tex]
We can find the value of x by various methods.
Method 1
By using formula
x=-b±√b²-4ac/2a
For ax²+bx+c=0
Here,
a=1, b=9, c=20
Putting the values.
x=-b±√b²-4ac/2a
x=-(-9)±√9²-4×1×20/2×1
Taking positive one.
[tex]x=\frac{-(-9)+ \sqrt{81-80} }{2} \\\\x=\frac{9+1}{2} \\\\x=5[/tex]
Taking negative one.
[tex]x=\frac{-(-9)- \sqrt{81-80} }{2} \\\\x=\frac{9-1}{2} \\\\x=4[/tex]
x=5,x=4
Method 2
[tex]\hookrightarrow x^{2} -9x+20=0\\\\\hookrightarrow x^{2}-4x-5x+20=0\\\\\hookrightarrow x(x-4)-5(x-4)=0\\\\\hookrightarrow (x-5)(x-4)=0[/tex]
x-5=0....I
x-4=0.....II
Solving equation I
x-5=0
x=5
Solving equation II
x-4=0
x=4