Respuesta :

Step-by-step explanation:

Need to FinD :

  • We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

[tex] \red{\frak{Given}} \begin{cases} & \sf {13\ cos \theta\ -\ 5\ =\ 0\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \big\lgroup Can\ also\ be\ written\ as \big\rgroup} \\ & \sf {cos \theta\ =\ {\footnotesize{\dfrac{5}{13}}}} \end{cases}[/tex]

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.

Where,

  • PQ = Opposite side
  • QR = Adjacent side
  • RP = Hypotenuse
  • ∠Q = 90°
  • ∠C = θ

As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

[tex] \rightarrow {\underline{\boxed{\red{\sf{cos \theta\ =\ \dfrac{Adjacent\ side}{Hypotenuse}}}}}} [/tex]

Since, we know that,

  • cosθ = 5/13
  • QR (Adjacent side) = 5
  • RP (Hypotenuse) = 13

So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.

Therefore,

[tex] \red \bigstar {\underline{\underline{\pmb{\sf{According\ to\ Question:-}}}}} [/tex]

[tex]\rule{200}{3}[/tex]

[tex] \sf \dashrightarrow {(PQ)^2\ +\ (QR)^2\ =\ (RP)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ (5)^2\ =\ (13)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ 25\ =\ 169} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 169\ -\ 25} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 144} \\ \\ \\ \sf \dashrightarrow {PQ\ =\ \sqrt{144}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{PQ\ (Opposite\ side)\ =\ 12}}}}_{\sf \blue{\tiny{Required\ value}}}} [/tex]

∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

[tex] \rightarrow {\underline{\boxed{\red{\sf{sin \theta\ =\ \dfrac{Opposite\ side}{Hypotenuse}}}}}} [/tex]

Where,

  • Opposite side = 12
  • Hypotenuse = 13

Therefore,

[tex] \sf \rightarrow {sin \theta\ =\ \dfrac{12}{13}} [/tex]

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

[tex] \rightarrow {\underline{\boxed{\red{\sf{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}}}}}} [/tex]

  • By substituting the values, we get,

[tex]\rule{200}{3}[/tex]

[tex] \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\Big( \dfrac{12}{13}\ +\ \dfrac{5}{13} \Big)}{\Big( \dfrac{12}{13}\ -\ \dfrac{5}{13} \Big)}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{13} \times \dfrac{13}{7}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{\cancel{13}} \times \dfrac{\cancel{13}}{7}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{7}}}}}_{\sf \blue{\tiny{Required\ value}}}} [/tex]

∴ Hence, the required answer is 17/7.

Ver imagen zackyle