Respuesta :

Answer:

[tex]y=e^{-3t}(A\: cos\: t+B\:sin\:t)[/tex]

Step-by-step explanation:

Given Second-Order Homogenous Differential Equation

[tex]y''+6y'+10y=0[/tex]

Use Auxiliary Equation

[tex]m^2+6m+10=0\\\\(m+3)^2+1=0\\\\(m+3)^2=-1\\\\m+3=\pm i\\\\m=-3\pm i[/tex]

General Solution

[tex]y=e^{pt}(A\: cos\: qt+B\:sin\:qt)\\\\y=e^{-3t}(A\: cos\: t+B\:sin\:t)[/tex]

Note that the DE has two distinct complex solutions [tex]p\pm qi[/tex] where [tex]A[/tex] and [tex]B[/tex] are arbitrary constants.