Respuesta :

Answer:

[tex]y=-(x-3)^2+7[/tex]

Step-by-step explanation:

[tex]f(x)=-x^2+6x-2\\\\y=-x^2+6x-2\\\\y-7=-x^2+6x-2-7\\\\y-7=-x^2+6x-9\\\\y-7=-(x^2-6x+9)\\\\y-7=-(x-3)^2\\\\y=-(x-3)^2+7[/tex]

Answer:

f(x) =-  (x - 3)² + 7

Step-by-step explanation:

a parabola in vertex form is

f(x) = a(x - h)² + k

where (h, k ) are the coordinates of the vertex and a is a multiplier

to obtain vertex form use the method of completing the square

add/subtract ( half the coefficient of the x- term )²

f(x) = - x² + 6x - 2 ( factor out - 1 from the first 2 terms )

    = - 1 (x² - 6x) - 2

    = - (x² + 2(- 3)x + 9 - 9 ) - 2

    = - (x - 3)² + 9 - 2

    = - (x - 3)² + 7