Respuesta :
Answer:
20 cm is the side of the bigger square.
Step-by-step explanation:
Let one square's side be x,
Then another squares side will be ( x + 5 )
- Formula for square's area: side²
Total area:
- x² + ( x + 5 )² = 625
- x² + x² + 10x + 25 = 625
- 2x² + 10 x + 25 - 625 = 0
- 2x² + 10x - 600 = 0
- 2(x² + 5x - 300) = 0
- x² + 5x - 300 = 0
- x² + 20x - 15x - 300 = 0
- x(x + 20) -15(x + 20) =0
- x = -20, 15
- x = 15
So one square's side is 15 cm
Then the bigger square has:
- x + 5
- 15 + 5
- 20 cm
Let the length of each side of the smaller square be [tex]x[/tex]. Then area of the square is [tex]x^2[/tex].
The length of each side of the larger square will be [tex]x+5[/tex].
Then the area of the square will be [tex](x+5)^2[/tex]
As per the question the area of the larger square is four times the square of the smaller square.
Therefore [tex](x+5)^2 = 4x x^2[/tex]
[tex]→ x^2 +10x +25 = 4x^2[/tex]
[tex]→ 3x^2 -10x -25 = 0[/tex]
[tex]→ 3x^2 +5x-15x - 25 = 0[/tex]
[tex]→ (3x + 5)(x-5) = 0[/tex]
We get [tex]x=5[/tex], and [tex]x=-\frac{5}{3}[/tex]
Considering the positive value we get [tex]x+5=5+5=10[/tex]
Therefore the side of the squares are [tex]5[/tex] cms and [tex]10[/tex]cm.