Respuesta :

[tex]\bold{\huge{\green{\underline{ Solution }}}}[/tex]

Given :-

  • The height of the cylinder is 26 cm
  • The base of the cylinder is 12cm
  • The base diameter of hemisphere is 12cm

To Find :-

  • We have to find the volume of composite solid.

Let's Begin :-

For cylinder,

  • Height = 26 cm
  • Base diameter = 12cm

Therefore,

The radius of the cylinder will be

[tex]\sf{=} {\sf{\dfrac{ Diameter}{2}}}[/tex]

[tex]\sf{=}{\sf{\dfrac{ 12}{2}}}[/tex]

[tex]\sf{ = 6 cm}[/tex]

Thus, The radius of cylinder is 6 cm

Now, we know that,

Volume of cylinder = πr²h

Subsitute the required values,

[tex]\sf{ = 3.14 × 6 × 6 × 26}[/tex]

[tex]\sf{ = 2939.04 cm³}[/tex]

Now, For Hemisphere

  • Base diameter = 12cm

Therefore,

The radius of the hemisphere will be

[tex]\sf{=} {\sf{\dfrac{ Diameter}{2}}}[/tex]

[tex]\sf{=}{\sf{\dfrac{ 12}{2}}}[/tex]

[tex]\sf{ = 6 cm}[/tex]

We know that,

Volume of hemisphere = 2/3πr³

Subsitute the required values,

[tex]\sf{ = 2/3× 3.14 × 6 × 6 × 6}[/tex]

[tex]{\sf{=}}{\sf{\dfrac{ 1356.48}{3}}}[/tex]

[tex]\sf{ = 452.16 cm³}[/tex]

Thus, The volume of hemisphere is 452.16 cm³

Therefore ,

Area of composite solid

[tex]\sf{ = 2939.04 + 452.16}[/tex]

[tex]\sf{ = 3391.2 cm³}[/tex]

[tex]\sf{ = 3391 cm³}[/tex]

Hence, The total volume of composite solid is 3391 cm³