Help me please, I’m not understand this

first off 3) should have been before 1) and 2), so let's first do 3).
now, Check the picture below, the points are really making a line, so let's make a quick table of the material. [tex]\begin{array}{|cc|ll} \cline{1-2} \stackrel{people}{x}&\stackrel{price}{y}\\ \cline{1-2} 2&14\\ 4&20\\ 8&32\\ \cline{1-2} \end{array}[/tex]
now, to get the equation of any straight line, all we need is two points off of it, hmmm for this one let's use hmmm (2 , 14) and (8 , 32)
[tex](\stackrel{x_1}{2}~,~\stackrel{y_1}{14})\qquad (\stackrel{x_2}{8}~,~\stackrel{y_2}{32}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{32}-\stackrel{y1}{14}}}{\underset{run} {\underset{x_2}{8}-\underset{x_1}{2}}}\implies \cfrac{18}{6}\implies 3 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{14}=\stackrel{m}{3}(x-\stackrel{x_1}{2}) \\\\\\ y - 14 = 3x-6\implies y=3x+8[/tex]
now let's do 1)
[tex]\stackrel{\textit{a bus containing 30 folks}}{y=3(\stackrel{x}{30})+8\implies y=98}[/tex]
now let's do 2)
[tex]\stackrel{\textit{a bus charging 122 bucks}}{\stackrel{y}{122}=3x+8}\implies 114=3x\implies \cfrac{114}{3}=x\implies 38=x[/tex]