Respuesta :

Answer:

[tex]x = 10[/tex]

Step-by-step explanation:

[tex]\sqrt{x+6} =x-6\\[/tex]

square both sides:

[tex]\implies x+6=(x-6)^2[/tex]

Expand brackets:

[tex]\implies x+6=x^2-12x+36[/tex]

Collect and combine like terms:

[tex]\implies x^2-13x+30=0[/tex]

[tex]\implies (x-10)(x-3)=0[/tex]

[tex]\implies x=10, x=3[/tex]

Substitute values back into original equation:

[tex]x=10: \sqrt{10+6} =10-6 \implies 4 = 4 \ \ \checkmark[/tex]

[tex]x=3: \sqrt{3+6} =3-6 \implies 3 = -3 \ \ \textsf{incorrect!}[/tex]

Therefore, [tex]x=10[/tex] only

[tex]\\ \tt\rightarrowtail \sqrt{x+6}=x-6[/tex]

[tex]\\ \tt\rightarrowtail x+6=(x-6)^2[/tex]

[tex]\\ \tt\rightarrowtail x+6=x^2-12x+36[/tex]

[tex]\\ \tt\rightarrowtail x^2-13x+30=0[/tex]

[tex]\\ \tt\rightarrowtail x^2-10x-3x+30=0[/tex]

[tex]\\ \tt\rightarrowtail (x-3)(x-10)=0[/tex]

[tex]\\ \tt\rightarrowtail x=3,10[/tex]