Respuesta :

[tex]\frac{1}{x} +\frac{1}{y} = 5\\\\x^{-1}+y^{-1}=5\\[/tex]

Above, I changed the fraction form of x and y into exponential form so it is easier to see the differentiation. Now, we can differentiate:

[tex]-1x^{-2}+-1y^{-2}\frac{dy}{dx}=5\\\\\frac{-1}{x^2}-\frac{1}{y^2}\frac{dy}{dx}=5\\\\-\frac{1}{y^2}\frac{dy}{dx}=5+\frac{1}{x^2}\\\\\frac{dy}{dx}=-5y^2-\frac{y^2}{x^2}[/tex]

Now that we have dy/dx, we can plug in the x, which is 4, and the y, which is 4/19. We know these values of x and y because your question stated y(4) = 4/19.

[tex]\frac{dy}{dx}=-5(\frac{4}{19})^2-\frac{(\frac{4}{19})^2}{(4)^2}\\\\\frac{dy}{dx}=-5(\frac{16}{361})-\frac{(\frac{16}{361})}{16}\\\\\frac{dy}{dx}=\frac{-80}{361}-\frac{1}{361}\\\\\frac{dy}{dx}=\frac{-81}{361}[/tex]