Use Green's Theorem to evaluate the line integral along the given positively oriented curve.


C

5y + 7e

x

dx +

10x + 9 cos(y2)

dy

C is the boundary of the region enclosed by the parabolas
y = x2 and x = y2

Respuesta :

It looks like the given integral is

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy[/tex]

The integrand is continuous everywhere in the region D bounded by C, where

D = {(x, y) : 0 ≤ x ≤ 1 and x² ≤ y ≤ √x}

so by Green's theorem,

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy = \iint_D \frac{\partial(10x+9\cos(y^2))}{\partial x} - \frac{\partial(5y+7e^x)}{\partial y} \, dx\, dy[/tex]

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy = 5 \iint_D dx\, dy[/tex]

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy = 5 \int_0^1 \int_{x^2}^{\sqrt x} dy\, dx[/tex]

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy = 5 \int_0^1 (\sqrt x-x^2)\, dx[/tex]

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy = 5 \left(\frac23 x^{\frac32} - \frac13x^3\right)\bigg|_0^1[/tex]

[tex]\displaystyle \int_C (5y+7e^x)\,dx + (10x+9\cos(y^2))\,dy = \boxed{\frac53}[/tex]