Respuesta :

Recall the half-angle identity for cosine:

cos²(x) = 1/2 (1 + cos(2x))

Then we can rewrite the integrand as

cos³(4x) = cos(4x) cos²(4x) = 1/2 cos(4x) (1 + cos(8x))

So we have

[tex]\displaystyle \int \cos^3(4x) \, dx = \frac12 \int (\cos(4x) + \cos(4x)\cos(8x)) \, dx[/tex]

Next, recall the cosine product identity,

cos(a) cos(b) = 1/2 (cos(a - b) + cos(a + b))

so that the integral is equivalent to

[tex]\displaystyle \int \cos^3(4x) \, dx = \frac12 \int \cos(4x) \, dx + \frac14 \int (\cos(4x - 8x) + \cos(4x + 8x)) \, dx[/tex]

[tex]\displaystyle \int \cos^3(4x) \, dx = \frac34 \int \cos(4x) \, dx + \frac14 \int \cos(12x) \, dx[/tex]

Computing the rest is trivial:

[tex]\displaystyle \int \cos^3(4x) \, dx = \boxed{\frac3{16} \sin(4x) + \frac1{48} \sin(4x) + C}[/tex]