The length of a segment is the distance between its endpoints.
(a) Length of AB
We have:
[tex]\mathbf{A = (1,2)}[/tex]
[tex]\mathbf{B = (4,5)}[/tex]
The length of AB is calculated using the following distance formula
[tex]\mathbf{AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}[/tex]
So, we have:
[tex]\mathbf{AB = \sqrt{(1 - 4)^2 + (2 - 5)^2}}[/tex]
[tex]\mathbf{AB = \sqrt{18}}[/tex]
Simplify
[tex]\mathbf{AB = 3\sqrt{2}}[/tex]
(b) Are AB and CD congruent
First, we calculate the length of CD using:
[tex]\mathbf{CD = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}[/tex]
Where:
[tex]\mathbf{C = (2, 4)}[/tex]
[tex]\mathbf{D = (2, 1)}[/tex]
So, we have:
[tex]\mathbf{CD = \sqrt{(2 -2)^2 + (4 - 1)^2}}[/tex]
[tex]\mathbf{CD = \sqrt{9}}[/tex]
[tex]\mathbf{CD = 3}[/tex]
By comparison
[tex]\mathbf{CD \ne AB}[/tex]
Hence, AB and CD are not congruent
(c) AB bisects CD or not?
If AB bisects CD, then:
[tex]\mathbf{AB = \frac 12 \times CD}[/tex]
The above equation is not true, because:
[tex]\mathbf{3\sqrt 2 \ne \frac 12 \times 3}[/tex]
Hence, AB does not bisect CD
(d) CD bisects AB or not?
If CD bisects AB, then:
[tex]\mathbf{CD = \frac 12 \times AB}[/tex]
The above equation is not true, because:
[tex]\mathbf{3 \ne \frac 12 \times 3\sqrt 2}[/tex]
Hence, CD does not bisect AB
Read more about lengths and bisections at:
https://brainly.com/question/20837270