Respuesta :
The freezing of the ice cube is an illustration of composite functions.
- The expression of volume is: [tex]\mathbf{V(t) = (\frac 12 t + 4)^3}[/tex]
- The expression of area is: [tex]\mathbf{A(t) = 6(\frac{1}{2}t + 4)^2}[/tex]
- The surface area will equal 294 square inches after 6 hours
The side length is given as:
[tex]\mathbf{s(t) = \frac{1}{2}t + 4}[/tex]
The area is given as:
[tex]\mathbf{A(s) = 6s^2}[/tex]
(a) Expression for volume, in terms of time (t)
The volume of a cube is:
[tex]\mathbf{V(s) = s^3}[/tex]
Substitute [tex]\mathbf{s(t) = \frac{1}{2}t + 4}[/tex]
[tex]\mathbf{V(t) = (\frac 12 t + 4)^3}[/tex]
(b) Surface area, in terms of t
We have:
[tex]\mathbf{A(s) = 6s^2}[/tex]
Substitute [tex]\mathbf{s(t) = \frac{1}{2}t + 4}[/tex]
[tex]\mathbf{A(t) = 6(\frac{1}{2}t + 4)^2}[/tex]
(c) At what time is the surface area, 294
Substitute 294 for A in [tex]\mathbf{A(t) = 6(\frac{1}{2}t + 4)^2}[/tex]
[tex]\mathbf{294) = 6(\frac{1}{2}t + 4)^2}[/tex]
Divide both sides by 6
[tex]\mathbf{49 = (\frac{1}{2}t + 4)^2}[/tex]
Take square roots of both sides
[tex]\mathbf{7 = \frac{1}{2}t + 4}[/tex]
Subtract 4 from both sides
[tex]\mathbf{3 = \frac{1}{2}t}[/tex]
Multiply both sides by 2
[tex]\mathbf{t = 6}[/tex]
Hence, the surface area will equal 294 square inches after 6 hours
Read more about composite functions at:
https://brainly.com/question/10830110