Respuesta :

⇒ Given:

Inner radius of the cylindrical pipe = 5 cm

Outer radius of the cylindrical pipe = 5.5 cm

In this question, we have to find the area of the cross section of the cylindrical pipe.

Let the inner radius be r and the outer radius be R.

Formula to be used :

[tex]\pi {r}^{2} - \pi {r}^{2} [/tex]

→ Taking out the common terms:

[tex]\pi ( {r}^{2} - {r}^{2} )[/tex]

Hence the required area is :

[tex]\pi ( {r}^{2} - {r}^{2} )[/tex]

Now,

r = 5 cm

R = 5.5 cm

Substituting the values in the equation:

[tex]\pi ( {5.5}^{2} - {5}^{2} ) \\ [/tex]

Giving the value of π as 3.14:

[tex]3.14(30.25 - 25) \\ 3.14 \times 5.25 \\ {16.485}^{2} [/tex]

[tex]hence the area of \\ cross- section of the cylinder \\ pipe \: is \: {16.485}^{2} [/tex]

[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]

Area of cross - section :

  • [tex]16.485 \: \: cm {}^{2} [/tex]

Solution is in attachment ~

Ver imagen DᴀʀᴋPᴀʀᴀᴅᴏx