Respuesta :

Answer:

For A

[tex]{ \rm{6 {x}^{2}(x + 1) - 2x(x + 1) }}[/tex]

• The equation above has a common bracket "(x + 1)". So, let's first factorise out that bracket:

[tex] \dashrightarrow \: { \rm{(x + 1) \{6 {x}^{2} - 2x \} }}[/tex]

• now in the second bracket, the common factor is x and 2.

[tex] \dashrightarrow \: { \rm{(x + 1) \{2x(3x - 1) \}}}[/tex]

Final answer;

[tex]{ \boxed{ \boxed{ \rm{ \dashrightarrow \: 2x(x + 1)(3x - 1) \: \: }}}}[/tex]

For B

[tex]{ \rm{3(x - 1)(x + 2) + ( {x}^{2} - x)(x + 2) }}[/tex]

• In the equation, the common bracket is (x + 2).

So let's first factorise it out:

[tex] \dashrightarrow \: { \rm{(x + 2) \{3(x - 1) + ( {x}^{2} - x) \}}} \\ \\ { \rm{(x + 2) \{3(x - 1) + x(x - 1) \}}}[/tex]

• In the second major bracket, the common bracket is (x - 1). so factorise it out:

[tex]{ \rm{(x + 2) (x - 1) \{3 + x \}}}[/tex]

Final answer:

[tex]{ \boxed{ \boxed{ \rm{ \dashrightarrow \: (x + 2)(x + 3)(x - 1) \: \: }}}}[/tex]