Answer:
Step-by-step explanation:
The linear equation where:
[tex]\large \boldsymbol {} \sf y=\underbrace{m}_{slope }x \ +\underbrace{b} _{y -intersept}[/tex]
Solution :
[tex]\displaystyle \sf \#13. \\\\ 6x-3y=8 \\\\\ -3y=8-6x \\\\y=-\frac{8-6x}{3} \\\\ \boxed{\sf y=2x-2\frac{1}{3} }} \\\\ slope =2 \\\\ y-intersept =-2\frac{1}{3} \\\\-------------[/tex]
[tex]\sf \#14 . \\\\\\ 7x=5y+2 \\\\5y=7x-2 \\\\y =\dfrac{7x-2}{5} \\\\ \boxed{\sf y=1,4x-0,4} \\\\slope = 1,4 \\\\y-intersept =-0,4 \\\\---------------[/tex]
[tex]\dispalystye \sf \#15. \\\\ -6y+4x=8 \ |\div2 \\\\-3y+2x=4 \\\\ y=-\dfrac{4-2x}{3} \\\\ y=\boxed{\sf \frac{2x-4}{3} } \\\\slope = \dfrac{2}{3} \\\\ y-intersept = -\dfrac{4}{3 }\\\\ -----------------[/tex]
[tex]\sf \#16 .\\\\ x+y=2x+3 \\\\y=2x-x+3 \\\\\boxed{\sf y=1\cdot x+3} \\\\slope =1 \\\\y-intersept =3[/tex]