Respuesta :
Let's height be x
Base=3x-8
ATQ
[tex]\\ \sf\longmapsto x(3x-8)=16[/tex]
[tex]\\ \sf\longmapsto 3x^2-8x=16[/tex]
[tex]\\ \sf\longmapsto 3x^2-8x-16=0[/tex]
[tex]\\ \sf\longmapsto 3x^2-12x+4x-16=0[/tex]
[tex]\\ \sf\longmapsto 3x(x-4)+4(x-4)=0[/tex]
[tex]\\ \sf\longmapsto (3x+4)(x-4)=0[/tex]
- Dimensions should be whole nos
[tex]\\ \sf\longmapsto x=4[/tex]
[tex]\\ \sf\longmapsto 3x-8=3(4)-8=12-8=4[/tex]
- Base=Height=4in
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
Let the height of rectangle be = x,
- height = x
- base = 3x - 8
Area of rectangle = base × height
- [tex](3x - 8) \times (x) = 16[/tex]
- [tex]3 {x}^{2} - 8x = 16[/tex]
- [tex]3 {x}^{2} - 8x - 16 = 0[/tex]
- [tex]3 {x}^{2} - 12x + 4x - 16 = 0[/tex]
- [tex]3x(x - 4) + 4(x - 4) = 0[/tex]
- [tex](3x + 4)(x - 4) = 0[/tex]
so, there are two cases now,
Case - 1 :
- [tex]3x + 4= 0[/tex]
- [tex]3x = - 4[/tex]
- [tex]x = \dfrac{ - 4}{3} [/tex]
here, value of x (length) is negative, measure of length can't be negative, so length is not equal to -4/3
Case - 2 :
- [tex]x - 4 = 0[/tex]
- [tex]x = 4[/tex]
here, value of x = 4, and satisfys the condition so
- length = x = 4 in
- base = 3x - 8 = (3 × 4) - 8 = 12 - 8 = 4 in