Respuesta :

Answer:

[tex]→ \: { \tt{f(x) = {x}^{2} - x }}[/tex]

• when f(x) is f(a-4), x is (a - 4):

[tex]→ \: { \tt{f(a - 4) = {(a - 4)}^{2} - a}}[/tex]

• Expand the bracket, from quadratic equation rules:

[tex]{ \boxed{ \bf{ {(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2} }}}[/tex]

• therefore:

[tex]→ \: { \tt{f(a - 4) = ( {a}^{2} - 8a + 16) - a}} \\ \\ → \: { \boxed{ \tt{f(a - 4) = {a}^{2} - 9a + 16}}}[/tex]

Answer:

Step-by-step explanation:

'x' shows up 3 times in f(x) =x^2-x.  To evaluate f(a - 4), replace each instance of 'x' with 'a - 4:'

f(a - 4) = (a - 4)^2 - (a - 4)

This result could be left as is, or it could be expanded:

f(a - 4) = a^2 - 8a + 16 - a + 4, or

f(a - 4) = a^2 - 9a + 20