Respuesta :

Answer:

•→ The motion of a particle or body in S.H.M acts towards a fixed point.

•→ Acceleration of the body under S.H.M is proportional to its displacement.

•→ This motion is periodic.

•→ Mechanical energy is conserved in S.H.M

Explanation:

S.H.M is Simple Harmonic Motion

[tex].[/tex]

SHM stands for Simple harmonic motion

Properties:-

[tex]\\ \bull\sf\dashrightarrow Particle\:moves\:in\:one\:dimension.[/tex]

[tex]\\ \bull\sf\dashrightarrow Particle\:moves\:towards\:a\:fixed\;mean\:position\:where\:F_{net}=0.[/tex]

[tex]\\ \bull\sf\dashrightarrow Net\:Force\:on\:the\:particle\:is\:always\:directed\:towards\:mean\:position.[/tex]

[tex]\\ \bull\sf\dashrightarrow Magnitude\:of\:net\;force\:is\:always\:proportional\:to\:the\:displacement\:of\:particle\:from\:the\:mean\:position\:at\:that\:constant.[/tex]

So

[tex]\\ \bull\tt\dashrightarrow \boxed{\sf F_{net}=-kx}[/tex]

  • k=Force constant

[tex]\\ \bull\tt\dashrightarrow ma=-kx[/tex]

  • m stands for mass
  • a stands for acceleration

[tex]\\ \bull\tt\dashrightarrow a=\dfrac{-k}{m}x[/tex]

Or

[tex]\\ \bull\tt\dashrightarrow a=-\omega^2x[/tex]

Where

[tex]\bull\sf \omega=Angular\:Frequency[/tex]

[tex]\\ \boxed{\bull\tt\dashrightarrow \dfrac{d^2x}{dt^2}=-\omega^2x}[/tex]

This equation is called as the differential equation of S.H.M