Respuesta :
Answer:
•→ The motion of a particle or body in S.H.M acts towards a fixed point.
•→ Acceleration of the body under S.H.M is proportional to its displacement.
•→ This motion is periodic.
•→ Mechanical energy is conserved in S.H.M
Explanation:
S.H.M is Simple Harmonic Motion
[tex].[/tex]
SHM stands for Simple harmonic motion
Properties:-
[tex]\\ \bull\sf\dashrightarrow Particle\:moves\:in\:one\:dimension.[/tex]
[tex]\\ \bull\sf\dashrightarrow Particle\:moves\:towards\:a\:fixed\;mean\:position\:where\:F_{net}=0.[/tex]
[tex]\\ \bull\sf\dashrightarrow Net\:Force\:on\:the\:particle\:is\:always\:directed\:towards\:mean\:position.[/tex]
[tex]\\ \bull\sf\dashrightarrow Magnitude\:of\:net\;force\:is\:always\:proportional\:to\:the\:displacement\:of\:particle\:from\:the\:mean\:position\:at\:that\:constant.[/tex]
So
[tex]\\ \bull\tt\dashrightarrow \boxed{\sf F_{net}=-kx}[/tex]
- k=Force constant
[tex]\\ \bull\tt\dashrightarrow ma=-kx[/tex]
- m stands for mass
- a stands for acceleration
[tex]\\ \bull\tt\dashrightarrow a=\dfrac{-k}{m}x[/tex]
Or
[tex]\\ \bull\tt\dashrightarrow a=-\omega^2x[/tex]
Where
[tex]\bull\sf \omega=Angular\:Frequency[/tex]
[tex]\\ \boxed{\bull\tt\dashrightarrow \dfrac{d^2x}{dt^2}=-\omega^2x}[/tex]
This equation is called as the differential equation of S.H.M