Respuesta :
Answer:
- [tex]\pmb{n=\dfrac{m}{(p-6)} }[/tex]
Step-by-step explanation:
[tex]\dfrac{m}{n}=(p-6)\\\\m=(p-6)n\\\\n=\dfrac{m}{(p-6)}[/tex]
[tex] \huge \boxed{\mathbb{QUESTION} \downarrow}[/tex]
- What is, m/n = p-6. Solve for n.
[tex] \large \boxed{\mathbb{ANSWER\: WITH\: EXPLANATION} \downarrow}[/tex]
[tex] \sf \: \frac { m } { n } = p - 6 \\ [/tex]
Variable n cannot be equal to 0 as division by zero is not defined. Multiply both sides of the equation by n.
[tex] \sf \: m=np+n\left(-6\right) [/tex]
Swap sides so that all variable terms are on the left-hand side.
[tex] \sf \: np+n\left(-6\right)=m [/tex]
Combine all terms containing n.
[tex] \sf\left(p-6\right)n=m [/tex]
Divide both sides by p-6.
[tex] \sf\frac{\left(p-6\right)n}{p-6}=\frac{m}{p-6} \\ [/tex]
Cancel (p-6) by p-6.
[tex] \sf \: n =\frac{m}{p-6} \\ [/tex]
Variable n cannot be equal to 0.
[tex] \boxed{ \boxed{ \bf \: n=\frac{m}{p-6}\text{, }n\neq 0 }}[/tex]