Respuesta :

[tex] \huge \boxed{\mathfrak{Question} \downarrow}[/tex]

Solve the equation using the quadratic formula ⇨ x² + 11x + 9 = 0

[tex] \large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}[/tex]

[tex] \sf \: x ^ { 2 } + 11 x + 9 = 0[/tex]

All equations of the form [tex]\sf\:ax^{2}+bx+c=0[/tex] can be solved using the quadratic formula: [tex]\sf\frac{-b±\sqrt{b^{2}-4ac}}{2a}[/tex]. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

[tex] \sf \: x^{2}+11x+9=0 [/tex]

This equation is in standard form: ax² + bx + c = 0. Substitute 1 for a, 11 for b and 9 for c in the quadratic formula [tex]\sf\frac{-b±\sqrt{b^{2}-4ac}}{2a}[/tex].

[tex] \sf \: x=\frac{-11±\sqrt{11^{2}-4\times 9}}{2} \\ [/tex]

Square 11.

[tex] \sf \: x=\frac{-11±\sqrt{121-4\times 9}}{2} \\ [/tex]

Multiply -4 times 9.

[tex] \sf \: x=\frac{-11±\sqrt{121-36}}{2} \\ [/tex]

Add 121 to -36.

[tex] \sf \: x=\frac{-11±\sqrt{85}}{2} \\ [/tex]

Now solve the equation [tex]\sf\:x=\frac{-11±\sqrt{85}}{2}[/tex] when ± is plus. Add -11 to √85.

[tex] \boxed{ \boxed{\bf \: x=\frac{\sqrt{85}-11}{2} }}[/tex]

Now solve the equation [tex]\sf\:x=\frac{-11±\sqrt{85}}{2}[/tex] when ± is minus. Subtract √85 from -11.

[tex] \boxed{ \boxed{\bf \: x=\frac{-\sqrt{85}-11}{2}} } \\ [/tex]

The equation is now solved. The solution set is :-

[tex]\bf \: x=\frac{\sqrt{85}-11}{2} \\ \\ \sf \: and \\ \\ \bf \: x=\frac{-\sqrt{85}-11}{2} [/tex]