Answer:
The answer is "66.351 N/C"
Explanation:
Given:
[tex]a=1.5\ cm= 1.5 \times 10^{-2}\ m\\\\q_1=3.9\ pc\\\\b=3\ cm\\\\c= 4\ cm\\\\q_2=0 \ pc\\\\[/tex]
Using Gauss Law:
[tex]\oint \vec{E} \cdot \vex{dA}= \frac{Q_{enc}}{\varepsilon_0 }[/tex]
[tex]E \times 4 \pi\ r^2=\frac{Q_{enc}}{\varepsilon_0}\\\\E= \frac{Q_{enc}}{4 \pi\ r^2 \varepsilon_0}= \frac{1}{4 \pi \varepsilon_0} \frac{Q_{enc}}{r^2}= \frac{k_e\ Q_{enc}}{r^2}\\\\[/tex]
[tex]=\frac{9\times 10^{9} \times 3.9 \times 10^{-12}}{(2.3\times 10^{-2})^2}\\\\=\frac{35.1\times 10^{-3}\ }{(2.3\times 10^{-2})^2}\\\\=\frac{35.1\times 10^{-3}\ }{5.29 \times 10^{-4}}\\\\=\frac{35.1\times 10 }{5.29 }\\\\=\frac{351}{5.29 }\\\\=66.351\ \frac{N}{C}[/tex]