Respuesta :
Answer:
0.2405 = 24.05% probability that the sample proportion of households spending more than $125 a week is less than 0.31.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Assume the population proportion is 0.34 and a simple random sample of 124 households is selected from the population.
This means that [tex]p = 0.34, n = 124[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.34[/tex]
[tex]s = \sqrt{\frac{0.34*0.66}{124}} = 0.0425[/tex]
What is the probability that the sample proportion of households spending more than $125 a week is less than 0.31?
This is the p-value of Z when X = 0.31, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{0.31 - 0.34}{0.0425}[/tex]
[tex]Z = -0.705[/tex]
[tex]Z = -0.705[/tex] has a p-value of 0.2405.
0.2405 = 24.05% probability that the sample proportion of households spending more than $125 a week is less than 0.31.