Answer:
x = -1.59
Step-by-step explanation:
We are here given a equation and we need to solve out for x. The given equation is ,
[tex]\sf\longrightarrow 4^{( x +3)}= 7[/tex]
Take log to the base " e " on both sides , so that we can remove the variable from the exponent .
[tex]\sf\longrightarrow log_e 4^{x+3}= log_e 7[/tex]
Simplify using the property of log , [tex]\sf log a^m = m log a [/tex] , we have ,
[tex]\sf\longrightarrow (x + 3) ln 4 = ln 7 [/tex]
Distribute by opening the brackets ,
[tex]\sf\longrightarrow x ln 4 + 3 ln 4 = ln 7[/tex]
This can be written as ,
[tex]\sf\longrightarrow x ln 4 = ln 7 - 3ln4 [/tex]
Divide both sides by ln 4 ,
[tex]\sf\longrightarrow x = \dfrac{ ln7}{ln 4 } - \dfrac{ 3ln4}{ln4} [/tex]
Simplify ,
[tex]\sf\longrightarrow x = \dfrac{ ln4 }{ln7 } -3[/tex]
On simplifying , we will get ,
[tex]\sf\longrightarrow \boxed{\blue{\sf x = -1.59 }}[/tex]