Respuesta :

Answer:

x = -1.59

Step-by-step explanation:

We are here given a equation and we need to solve out for x. The given equation is ,

[tex]\sf\longrightarrow 4^{( x +3)}= 7[/tex]

Take log to the base " e " on both sides , so that we can remove the variable from the exponent .

[tex]\sf\longrightarrow log_e 4^{x+3}= log_e 7[/tex]

Simplify using the property of log , [tex]\sf log a^m = m log a [/tex] , we have ,

[tex]\sf\longrightarrow (x + 3) ln 4 = ln 7 [/tex]

Distribute by opening the brackets ,

[tex]\sf\longrightarrow x ln 4 + 3 ln 4 = ln 7[/tex]

This can be written as ,

[tex]\sf\longrightarrow x ln 4 = ln 7 - 3ln4 [/tex]

Divide both sides by ln 4 ,

[tex]\sf\longrightarrow x = \dfrac{ ln7}{ln 4 } - \dfrac{ 3ln4}{ln4} [/tex]

Simplify ,

[tex]\sf\longrightarrow x = \dfrac{ ln4 }{ln7 } -3[/tex]

On simplifying , we will get ,

[tex]\sf\longrightarrow \boxed{\blue{\sf x = -1.59 }}[/tex]