Respuesta :

Answer:

[tex](\frac{f}{g})(x) = \frac{x- 3}{2x + 1}[/tex]

Step-by-step explanation:

Given

[tex]f(x) =x^2 -x - 6[/tex]

[tex]g(x) = 2x^2 + 5x + 2[/tex]

Required

[tex](\frac{f}{g})(x)[/tex]

This is calculated as:

[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]

So, we have:

[tex](\frac{f}{g})(x) = \frac{x^2 - x - 6}{2x^2 + 5x + 2}[/tex]

Expand

[tex](\frac{f}{g})(x) = \frac{x^2 +2x - 3x - 6}{2x^2 + 4x+x + 2}[/tex]

Factorize

[tex](\frac{f}{g})(x) = \frac{x(x +2) - 3(x + 2)}{2x(x + 2)+1(x + 2)}[/tex]

Factor out x + 2

[tex](\frac{f}{g})(x) = \frac{(x- 3)(x + 2)}{(2x + 1)(x + 2)}[/tex]

Cancel out x + 2

[tex](\frac{f}{g})(x) = \frac{x- 3}{2x + 1}[/tex]