Respuesta :
Answer:
The answer is Tonya's phone had the greater initial trade-in value.
Leo's phone decreases at an average rate slower than the trade in value of Tonya's phone.
Step-by-step explanation:
Given
Tonya
[tex]f(x) = 490 * 0.88^x[/tex]
Leo
[tex]x \to g(x)[/tex]
[tex]0 \to 480[/tex]
[tex]2 \to 360[/tex]
[tex]4 \to 470[/tex]
Solving (a): The phone with greater initial value
The initial value is when x = 0. So, we have:
[tex]f(x) = 490 * 0.88^x[/tex]
[tex]f(0) = 490 * 0.88^0[/tex]
[tex]f(0) = 490 * 1[/tex]
[tex]f(0) = 490[/tex]
From Leo's table
[tex]g(0) = 480[/tex]
By comparison;
[tex]f(0) > g(0)[/tex]
i.e.
[tex]490 > 480[/tex]
So: Tonya's had the greater initial trade-in value
Solving (b): The phone with lesser rate
An exponential function is:
[tex]y = ab^x[/tex]
Where:
[tex]b \to rate[/tex]
For Tonya
[tex]b = 0.88[/tex]
For Leo, we have:
[tex](x_1,y_1) = (0,480)[/tex]
[tex](x_2,y_2) = (2,360)[/tex]
So, the equation becomes:
[tex]y = ab^x[/tex]
[tex]480 = ab^0[/tex] and [tex]360 = ab^2[/tex]
Solving [tex]480 = ab^0[/tex], we have:
[tex]480 = a * 1[/tex]
[tex]480 = a[/tex]
[tex]a= 480[/tex]
[tex]360 = ab^2[/tex] becomes
[tex]360 = 480 * b^2[/tex]
Divide both sides by 480
[tex]0.75 = b^2[/tex]
Take square roots
[tex]0.87 = b[/tex]
[tex]b=0.87[/tex] -- Leo's rate
By comparison; Leo's rate is slower i.e. 0.87 < 0.88