Respuesta :

Given:

The endpoints of the latus rectum at (-2, 3) and (-2, 15).

The directrix at x = 4.

To find:

The equation of the parabola.

Solution:

The equation of the parabola is:

[tex](y-k)^2=4p(x-h)[/tex]                   ...(1)

Where, [tex]x=h-p[/tex] is directrix and [tex](h+p,k\pm |2p|),p<0[/tex] are the end point of the latus rectum.

The directrix at x = 4. So,

[tex]h-p=4[/tex]               ...(i)

The endpoints of the latus rectum at (-2, 3) and (-2, 15). So,

[tex](h+p,k-|2p|)=(-2,3)[/tex]

[tex](h+p,k+|2p|)=(-2,15)[/tex]

Now,

[tex]h+p=-2[/tex]              ...(ii)

[tex]k-2p=3[/tex]              ...(iii)

[tex]k+2p=15[/tex]           ...(iv)

Adding (i) and (ii), we get

[tex]2h=2[/tex]

[tex]h=1[/tex]

Putting [tex]h=1[/tex] in (i), we get

[tex]1-p=4[/tex]

[tex]-p=4-1[/tex]

[tex]-p=3[/tex]

[tex]p=-3[/tex]

Putting [tex]p=-3[/tex] in (iii), we get

[tex]k-|2(-3)|=3[/tex]

[tex]k-6=3[/tex]

[tex]k=3+6[/tex]

[tex]k=9[/tex]

Putting [tex]h=1,p=-3,k=9[/tex] in (1), we get

[tex](y-(9))^2=4(-3)(x-1)[/tex]

[tex](y-9)^2=-12(x-1)[/tex]

Therefore, the required equation of the parabola is [tex](y-9)^2=-12(x-1)[/tex].