Respuesta :

Answer:

[tex]9 - 4\sqrt{2}[/tex]

Step-by-step explanation:

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex]

tan60° = [tex]\sqrt{3}[/tex]

tan45° = 1

cos45° = [tex]\frac{1}{\sqrt{2} }[/tex]

(2sin60°)(3tan60°) - (4tan45°)(2cos45°)

now substitute the values of each trigonometrical angles

[tex](2*\frac{\sqrt{3} }{2} )(3*\sqrt{3} ) - (4*1)(2*\frac{1}{\sqrt{2} } )[/tex]

[tex]\sqrt{3} * (3\sqrt{3}) - 4*(\frac{2}{\sqrt{2} } )[/tex]

[tex]3*3 - 4*\frac{2}{\sqrt{2} } *\frac{\sqrt{2} }{\sqrt{2} }[/tex]

[tex]9 - 4 *\frac{2\sqrt{2} }{2}[/tex]

[tex]9 - 4 * \sqrt{2}[/tex]

[tex]9 - 4\sqrt{2}[/tex]