Answer:
[tex]9 - 4\sqrt{2}[/tex]
Step-by-step explanation:
sin60° = [tex]\frac{\sqrt{3} }{2}[/tex]
tan60° = [tex]\sqrt{3}[/tex]
tan45° = 1
cos45° = [tex]\frac{1}{\sqrt{2} }[/tex]
(2sin60°)(3tan60°) - (4tan45°)(2cos45°)
now substitute the values of each trigonometrical angles
[tex](2*\frac{\sqrt{3} }{2} )(3*\sqrt{3} ) - (4*1)(2*\frac{1}{\sqrt{2} } )[/tex]
[tex]\sqrt{3} * (3\sqrt{3}) - 4*(\frac{2}{\sqrt{2} } )[/tex]
[tex]3*3 - 4*\frac{2}{\sqrt{2} } *\frac{\sqrt{2} }{\sqrt{2} }[/tex]
[tex]9 - 4 *\frac{2\sqrt{2} }{2}[/tex]
[tex]9 - 4 * \sqrt{2}[/tex]
[tex]9 - 4\sqrt{2}[/tex]