Respuesta :

Given:

In ΔWXY, x = 680 inches, w = 900 inches and ∠W=157°.

To find:

The all possible values of ∠X, to the nearest degree.

Solution:

Law of Sines:

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

For ΔWXY,

[tex]\dfrac{w}{\sin W}=\dfrac{x}{\sin X}=\dfrac{y}{\sin Y}[/tex]

Now,

[tex]\dfrac{w}{\sin W}=\dfrac{x}{\sin X}[/tex]

[tex]\dfrac{900}{\sin (157^\circ)}=\dfrac{680}{\sin X}[/tex]

[tex]900\sin X=680\sin (157^\circ)[/tex]

[tex]\sin X=\dfrac{680}{900}\sin (157^\circ)[/tex]

[tex]\sin X=0.295219[/tex]

[tex]X=\sin^{-1}(0.295219)[/tex]

[tex]X=17.17067[/tex]

[tex]X\approx 17[/tex]

Therefore, the value of ∠X is 17 degrees.