Answer:
[tex]\displaystyle x \approx 37.4^\circ[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Trigonometry
- [Right Triangles Only] SOHCAHTOA
- [Right Triangles Only] cosθ = adjacent over hypotenuse
Step-by-step explanation:
Step 1: Define
Angle θ = x
Adjacent Leg = 5.8
Hypotenuse = 7.3
Step 2: Solve for x
- Substitute in variables [Cosine]: [tex]\displaystyle cosx^\circ = \frac{5.8}{7.3}[/tex]
- [Fraction] Divide: [tex]\displaystyle cosx^\circ = 0.794521[/tex]
- [Equality Property] Trig inverse: [tex]\displaystyle x^\circ = cos^{-1}(0.794521)[/tex]
- Evaluate trig inverse: [tex]\displaystyle x = 37.39^\circ[/tex]
- Round: [tex]\displaystyle x \approx 37.4^\circ[/tex]