Respuesta :

Answer:

The slope of the tangent m = -0.0833

Step-by-step explanation:

Step(i):-

Given that the curve

      x y - 2y² + x² = -5 ...(i)

Differentiating equation (i) with respective to 'x', we get

  [tex]x(\frac{dy}{dx} )+y (1) -2(2y)\frac{dy}{dx} + 2x=0[/tex]

    [tex]x(\frac{dy}{dx} ) -2(2y)\frac{dy}{dx} = -2x-y[/tex]

    [tex](x -4y)\frac{dy}{dx} = -2x-y[/tex]

       [tex]\frac{dy}{dx} = \frac{-2x-y}{x-4y}[/tex]

Step(ii):-

The slope of the tangent

[tex](\frac{dy}{dx})_{1,-1.5} = \frac{-2x-y}{x-4y}[/tex]

[tex](\frac{dy}{dx})_{1,-1.5} = \frac{-2(1)-(-1.5)}{1-4(-1.5)}[/tex]

       m =   [tex]\frac{-2+1.5}{1+6}[/tex]

       [tex]m = \frac{-0.5}{6} = -0.083[/tex]

The slope of the tangent m = -0.0833