Respuesta :

Answer:

The explicit rule for the sequence in the table above is:

[tex]f_n=10n+2[/tex]

∴ 2nd option i.e. [tex]f_n=10n+2[/tex]  is the correct option.

Step-by-step explanation:

Given the table

Tickets            1         2       3         4

Total Cost        12       22     32      42

An arithmetic sequence has a constant difference 'd' and is defined by  

[tex]f_n=f_1+\left(n-1\right)d[/tex]

where:

[tex]f_n[/tex] = nth term

[tex]f_1[/tex] = first term

[tex]n[/tex] = term position

[tex]d[/tex] = common difference

In our case, the Arithmetic sequence is

12, 22, 32, 42,...

computing the differences of all the adjacent terms

[tex]22 - 12 = 10, 32 - 22 = 10, 42 - 32 = 10[/tex]

The difference between all the adjacent terms is the same and equal to

[tex]d = 10[/tex]

Important Tip:

As the first term involves the cost of 1 ticket which is 12, thus

[tex]f_1=12[/tex]

Now using the nth term formula of the Arithmetic sequence

[tex]f_n=f_1+\left(n-1\right)d[/tex]

now substituting [tex]f_1=12[/tex] and [tex]d = 10[/tex] in the formula

[tex]\:fn=10\left(n-1\right)+12[/tex]

[tex]f_n=10n-10+12\:[/tex]

simplifying

[tex]f_n=10n+2[/tex]

Therefore, the explicit rule for the sequence in the table above is:

[tex]f_n=10n+2[/tex]

∴ 2nd option i.e. [tex]f_n=10n+2[/tex]  is the correct option.