Respuesta :

Given:

The expression is

[tex]\sqrt{\sqrt[3]{6}}[/tex]

To find:

The simplified form of the given expression.

Solution:

We have,

[tex]\sqrt{\sqrt[3]{6}}[/tex]

Using the properties of radical and exponent, we get

[tex]=(\sqrt[3]{6})^{\frac{1}{2}}[/tex]                     [tex][\because \sqrt{x}=x^{\frac{1}{2}}][/tex]

[tex]=\left(6^{\frac{1}{3}}\right)^{\frac{1}{2}}[/tex]                  [tex][\because \sqrt[n]{x}=x^{\frac{1}{n}}][/tex]

[tex]=6^{\frac{1}{3}\times\frac{1}{2}}[/tex]                    [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]=6^{\frac{1}{6}}[/tex]

Therefore, the correct option is A.