Measure the lengths of the sides of ∆ABC in GeoGebra, and compute the sine and the cosine of ∠A and ∠B. Verify your calculations by finding the sine and cosine of ∠A and ∠B using a calculator

Respuesta :

Answer:

[tex]Sin \angle A =0.80[/tex]

[tex]Cos \angle A=0.60[/tex]

[tex]Sin \angle B =0.60[/tex]

[tex]Cos \angle B=0.80[/tex]

Step-by-step explanation:

Given

I will answer this question using the attached triangle

Solving (a): Sine and Cosine A

In trigonometry:

[tex]Sin \theta =\frac{Opposite}{Hypotenuse}[/tex] and

[tex]Cos \theta =\frac{Adjacent}{Hypotenuse}[/tex]

So:

[tex]Sin \angle A =\frac{BC}{BA}[/tex]

Substitute values for BC and BA

[tex]Sin \angle A =\frac{8cm}{10cm}[/tex]

[tex]Sin \angle A =\frac{8}{10}[/tex]

[tex]Sin \angle A =0.80[/tex]

[tex]Cos \angle A=\frac{AC}{BA}[/tex]

Substitute values for AC and BA

[tex]Cos \angle A=\frac{6cm}{10cm}[/tex]

[tex]Cos \angle A=\frac{6}{10}[/tex]

[tex]Cos \angle A=0.60[/tex]

Solving (b): Sine and Cosine B

In trigonometry:

[tex]Sin \theta =\frac{Opposite}{Hypotenuse}[/tex] and

[tex]Cos \theta =\frac{Adjacent}{Hypotenuse}[/tex]

So:

[tex]Sin \angle B =\frac{AC}{BA}[/tex]

Substitute values for AC and BA

[tex]Sin \angle B =\frac{6cm}{10cm}[/tex]

[tex]Sin \angle B =\frac{6}{10}[/tex]

[tex]Sin \angle B =0.60[/tex]

[tex]Cos \angle B=\frac{BC}{BA}[/tex]

Substitute values for BC and BA

[tex]Cos \angle B=\frac{8cm}{10cm}[/tex]

[tex]Cos \angle B=\frac{8}{10}[/tex]

[tex]Cos \angle B=0.80[/tex]

Using a calculator:

[tex]A = 53^{\circ}[/tex]

So:

[tex]Sin(53^{\circ}) =0.7986[/tex]

[tex]Sin(53^{\circ}) =0.80[/tex] -- approximated

[tex]Cos(53^{\circ}) = 0.6018[/tex]

[tex]Cos(53^{\circ}) = 0.60[/tex] -- approximated

[tex]B = 37^{\circ}[/tex]

So:

[tex]Sin(37^{\circ}) = 0.6018[/tex]

[tex]Sin(37^{\circ}) = 0.60[/tex] --- approximated

[tex]Cos(37^{\circ}) = 0.7986[/tex]

[tex]Cos(37^{\circ}) = 0.80[/tex] --- approximated

Ver imagen MrRoyal

Answer:

Lengths

AB = 13

BC = 5

AC = 12

A Sin = 0.38 A Cos = 0.92

B sin = 0.92 B Cos = 0.38

Also there is a image of the answer

Step-by-step explanation: for Plato/edmentum

Ver imagen michellysenpai9