Select the correct answer.
Consider matrices A, B, C, and D:
-1 4
14 4
A=
B=144 C=0
4
44
-4 3
DE
What is the sum of the two square matrices?
OA.
13 6
4 01
07
O.B.
8
OC.
09
OD
-3
7 8 10
00A

Select the correct answer Consider matrices A B C and D 1 4 14 4 A B144 C0 4 44 4 3 DE What is the sum of the two square matrices OA 13 6 4 01 07 OB 8 OC 09 OD class=

Respuesta :

Step-by-step explanation:

step 1. The square matrices are C and D.

step 2. If you add up the top rows you get 2, 8, -4 .

step 3. The answer is B.

The required sum of the two square matrices is,
[tex]\left[\begin{array}{ccc}2&8&-4\\1&0&3\\-1&-2&1\end{array}\right][/tex]. Option B is correct.

Consider matrices A, B, C, and D,
[tex]A=\left[\begin{array}{cc}-1&4\\5&-2\\3&4\end{array}\right][/tex] , [tex]B =\left[\begin{array}{cc}4&4\\4&4\\4&4\end{array}\right][/tex], [tex]c= \left[\begin{array}{ccc}-1&2&5\\0&-4&1\\-4&3&1\end{array}\right][/tex], [tex]D = \left[\begin{array}{ccc}3&6&-9\\1&4&2\\3&-5&0\end{array}\right][/tex]

What is the matrix?

Matrix is defined as the arrangement of the number in the array between the square parenthesis.

Since Matrix C and D is a square matrix of 3 * 3 order.

[tex]C + D =\left[\begin{array}{ccc}-1&2&5\\0&-4&1\\-4&3&1\end{array}\right]+\left[\begin{array}{ccc}3&6&-9\\1&4&2\\3&-5&0\end{array}\right][/tex]
[tex]C + D =\left[\begin{array}{ccc}-1+3&2+6&5-9\\0+1&-4+4&1+2\\-4+3&3-5&1+0\end{array}\right][/tex]
[tex]C+D=\left[\begin{array}{ccc}2&8&-4\\1&0&3\\-1&-2&1\end{array}\right][/tex]

Thus, the required sum of the two square matrices is,[tex]\left[\begin{array}{ccc}2&8&-4\\1&0&3\\-1&-2&1\end{array}\right][/tex]. Option B is correct.

Learn more about matrix here:
https://brainly.com/question/9967572

#SPJ2