Answer:
Explanation:
[tex]v = T^a\times \rho^b[/tex]
Using dimensional formula on both sides ,
LT⁻¹ = [tex](ML^{-1}T^{-2})^a(ML^{-3})^b[/tex]
= [tex]M^{a+b}L^{-a-3b}T^{-2a}[/tex]
equating the power of equal terms
- 2 a = -1
a = 0.5
-0.5 -3b = 1
3b = -1.5
b = -0.5
a + b = 0
Hence
a = 0.5
b = -0.5
[tex]v=\sqrt{\frac{T}{\rho} }[/tex]