Respuesta :

Answer:

k = 2

Step-by-step explanation:

As given,

the differential equation is - y'' + 9y = 26[tex]e^{-2x}[/tex]      .......(1)

Let the solution of the differential equation be y = [tex]y_{c} + y_{p}[/tex]

The auxiliary equation becomes

m² + 9 = 0

⇒m² = -9

⇒m = ±√-9

⇒m = ± 3i

So, the complimentary solution becomes

[tex]y_{c}(x)[/tex] = A cos(3x) + B sin(3x)

Now,

Let the particular solution be [tex]y_{p}[/tex] = A[tex]e^{-2x}[/tex]

⇒[tex]y'_{p}[/tex] = -2A[tex]e^{-2x}[/tex]

and [tex]y''_{p}[/tex] = 4A[tex]e^{-2x}[/tex]

Now,

equation (1) becomes

4A[tex]e^{-2x}[/tex] + 9 ( A[tex]e^{-2x}[/tex] )= 26[tex]e^{-2x}[/tex]

⇒4A[tex]e^{-2x}[/tex] + 9A[tex]e^{-2x}[/tex]  = 26[tex]e^{-2x}[/tex]

⇒13A[tex]e^{-2x}[/tex]  = 26[tex]e^{-2x}[/tex]

By comparing , we get

13A = 26

⇒A = [tex]\frac{26}{13}[/tex] = 2

∴ we get

[tex]y_{p}[/tex] = 2[tex]e^{-2x}[/tex]

so, the solution becomes

y = A cos(3x) + B sin(3x) + 2[tex]e^{-2x}[/tex]

As given , the solution y=k[tex]e^{-2x}[/tex] +4cos(3x)

So , by comparing with the solution , we get k = 2

So, the correct option is (A) 2.