In addition to the information given in the drawing, which statement would be sufficient to prove

that STW-XYZ?

Number 5

Respuesta :

Answer:

[tex]SW= 15[/tex] and [tex]TW= 24[/tex]

Step-by-step explanation:

Given

See attachment for the triangles

Required

Which additional statement proves the similarity of both triangles

From the attachment:

[tex]ST = 27\\XY = 9\\YZ = 8\\XZ = 5[/tex]  

The similar sides of both triangles are: ST and XY

So:

[tex]Ratio = ST : XY[/tex]

[tex]Ratio = 27 : 9[/tex]

Divide by 9

[tex]Ratio = 3 : 1[/tex]

Another similar sides are: TW and YZ

So:

[tex]TW : YZ = TW : 8[/tex]

Equate both ratios:

[tex]TW : 8 = 3 : 1[/tex]

Represent as fraction

[tex]\frac{TW }{ 8 }= \frac{3 }{ 1}[/tex]

[tex]\frac{TW }{ 8 }= 3[/tex]

Multiply both sides by 8

[tex]8 * \frac{TW }{ 8 }= 3*8[/tex]

[tex]TW= 3*8[/tex]

[tex]TW= 24[/tex]

Another similar sides are: SW and XZ

So:

[tex]SW:XZ = SW:5[/tex]

Equate both ratios:

[tex]SW:5 = 3:1[/tex]

Represent as fraction

[tex]\frac{SW}{5} = \frac{3}{1}[/tex]

[tex]\frac{SW}{5} = 3[/tex]

Multiply both sides by 5

[tex]5*\frac{SW}{5} = 3*5[/tex]

[tex]SW = 3*5[/tex]

[tex]SW = 15[/tex]

So, the statement that proves the similarity of the triangles is:

[tex]SW= 15[/tex] and [tex]TW= 24[/tex]

Ver imagen MrRoyal