Answer:
[tex](x,y) = (17,16)[/tex]
Step-by-step explanation:
Given
[tex]T(x_1,y_1) = (4, 1)[/tex]
[tex]U(x_2,y_2) = (30, 11)[/tex]
[tex]V(x_3,y_3) = (17, 36)[/tex]
Required
Determine the coordinates of the centroid
The coordinate is calculated as:
[tex](x,y) = (\frac{1}{3}(x_1+x_2+x_3),\frac{1}{3}(y_1+y_2+y_3))[/tex]
Substitute values for x's and y's
[tex](x,y) = (\frac{1}{3}(4+30+17),\frac{1}{3}(1+11+36))[/tex]
[tex](x,y) = (\frac{1}{3}(51),\frac{1}{3}(48))[/tex]
[tex](x,y) = (\frac{51}{3},\frac{48}{3})[/tex]
[tex](x,y) = (17,16)[/tex]
Hence, the coordinates of the centroid is (17,16)