Jordan was given the expression 2x2^-3 x 2^-5 How should he write the expression as a fraction? Describe the exponent rules Jordan should use to simplify the expression

Respuesta :

Answer:

[tex]2*2^{-3} * 2^{-5} =\frac{1}{128}[/tex]

Step-by-step explanation:

Given

[tex]2*2^{-3} * 2^{-5}[/tex]

Required

Write as a fraction

To do this, Jordan has to apply the following rules

Negative Exponent rule:

[tex]a^{-m} = \frac{1}{a^m}[/tex]

So, the expression is:

[tex]2*2^{-3} * 2^{-5} = \frac{2}{2^3 * 2^5}[/tex]

To solve further, we apply the product rule of exponent

[tex]a^m * a^n = a^{m+n}[/tex]

So, the expression is:

[tex]2*2^{-3} * 2^{-5} =\frac{2}{2^{3+5}}[/tex]

[tex]2*2^{-3} * 2^{-5} =\frac{2}{2^8}[/tex]

Evaluate the exponents

[tex]2*2^{-3} * 2^{-5} =\frac{2}{256}[/tex]

Divide the numerator and denominator by 2

[tex]2*2^{-3} * 2^{-5} =\frac{2/2}{256/2}[/tex]

[tex]2*2^{-3} * 2^{-5} =\frac{1}{128}[/tex]