someone please help me this is really confusing


Answer:
Area of trapezoid is: [tex]\mathbf{11x^3y^2}[/tex]
Area of triangle is: [tex]\mathbf{6a^3b^2}[/tex]
Perimeter of triangle is: [tex]\mathbf{3ab+14a^2b}[/tex]
Step-by-step explanation:
Image 1:
We need to Find area of trapezoid.
The formula used is: [tex]Area=\frac{1}{2}h(b_1+b_2)[/tex]
where h is height and b₁ and b₂ are parallel sides.
Looking at the figure we get:
h = 2xy
b₁ = 4x²y
b₂ = 7x²y
Putting values and finding area:
[tex]Area=\frac{1}{2}h(b_1+b_2)\\Area=\frac{1}{2}\times 2xy(7x^2y+4x^2y)\\Area=\frac{1}{2}\times 2xy(11x^2y)\\Area=\frac{1}{2}\times 22x^3y^2\\Area=11x^3y^2[/tex]
So, Area of trapezoid is: [tex]\mathbf{11x^3y^2}[/tex]
Image 2:
We need to find area and perimeter of triangle.
First we will find area of triangle.
The formula used is: [tex]Area=\frac{1}{2}\times b \times h[/tex]
where b is base and h is height
Looking at the figure,
b = 3ab
h = 4a²b
Finding area:
[tex]Area=\frac{1}{2}\times b \times h\\Area=\frac{1}{2}\times 3ab \times 4a^2b\\Area=\frac{1}{2}\times 12a^3b^2\\Area=6a^3b^2[/tex]
So, Area of triangle is: [tex]\mathbf{6a^3b^2}[/tex]
Now, finding Perimeter of triangle
The formula used is: [tex]Perimeter = Sum\:of\:lengths\:of\:all\:sides\:of\:triangle[/tex]
Looking at figure:
Length of side 1 = 3ab
Length of side 2 = 4a²b
Length of side 3 = 10a²b
Finding Perimeter
[tex]Perimeter = Sum\:of\:lengths\:of\:all\:sides\:of\:triangle\\Perimeter = 3ab+10a^2b+4a^2b\\Perimeter=3ab+14a^2b[/tex]
So, Perimeter of triangle is: [tex]\mathbf{3ab+14a^2b}[/tex]