Respuesta :

Answer:

p = [tex]\frac{12}{7}[/tex]

Step-by-step explanation:

let the root be α then the other root is 3α

The sum of the roots of a quadratic equation is

α + 3α = - [tex]\frac{b}{a}[/tex] = - [tex]\frac{-8}{7}[/tex] = [tex]\frac{8}{7}[/tex]

Thus 4α = [tex]\frac{8}{7}[/tex] ( divide both sides by 4 )

α = [tex]\frac{2}{7}[/tex]

The product of the roots of a quadratic equation are

α × 3α = [tex]\frac{c}{a}[/tex] = [tex]\frac{p}{7}[/tex], that is

3α² = [tex]\frac{p}{7}[/tex] ← substitute value of α

3 × ([tex]\frac{2}{7}[/tex] )² = [tex]\frac{p}{7}[/tex]

3 × [tex]\frac{4}{49}[/tex] = [tex]\frac{p}{7}[/tex]

[tex]\frac{12}{49}[/tex] = [tex]\frac{p}{7}[/tex] ( cross- multiply )

49p = 84 ( divide both sides by 49 )

p = [tex]\frac{84}{49}[/tex] = [tex]\frac{12}{7}[/tex]