Let the two number is a and b
so,
product =ab=20
sum of square=[tex]\bold{a^2+b^2=41 }[/tex]
Then,
[tex]\bold{(a+b)^2=a^2+b^2+2ab }[/tex]
[tex]\bold{ (a+b)^2=41+2×40 }[/tex]
[tex]\bold{ (a+b)^2=81 }[/tex]
[tex]\bold{a+b=\sqrt{81} }[/tex]
[tex]\bold{a+b=9 }[/tex]•••••••••(equation I)
Now,
[tex]\bold{(a-b)^2=a^2+b^2-4ab }[/tex]
[tex]\bold{ (a-b)^2=41-4×20 }[/tex]
[tex]\bold{(a-b)^2=41-40 }[/tex]
[tex]\bold{a-b=\sqrt{1} }[/tex]
[tex]\bold{a-b=1 }[/tex]••••••••(equation II)
Now,combine the equation I and equation II
we,get
[tex]\bold{a+b+a-b=9+1 }[/tex]
[tex]\bold{a+\cancel{b}+a\cancel{-b}=10 }[/tex]
[tex]\bold{ 2a=10 }[/tex]
[tex]\bold{a=\dfrac{10}{2} }[/tex]
[tex]\blue{\boxed{ a=5 }}[/tex]
Then,
put the value of a in equation II.
we get that,
[tex]\bold{5-b=1 }[/tex]
[tex]\bold{b+1=5 }[/tex]
[tex]\bold{b=5-1 }[/tex]
[tex]\bold{\boxed{\blue{b=4}} }[/tex]
so,
The two number is 5 and 4.