Respuesta :

Let the two number is a and b

so,

product =ab=20

sum of square=[tex]\bold{a^2+b^2=41 }[/tex]

Then,

[tex]\bold{(a+b)^2=a^2+b^2+2ab }[/tex]

[tex]\bold{ (a+b)^2=41+2×40 }[/tex]

[tex]\bold{ (a+b)^2=81 }[/tex]

[tex]\bold{a+b=\sqrt{81} }[/tex]

[tex]\bold{a+b=9 }[/tex]•••••••••(equation I)

Now,

[tex]\bold{(a-b)^2=a^2+b^2-4ab }[/tex]

[tex]\bold{ (a-b)^2=41-4×20 }[/tex]

[tex]\bold{(a-b)^2=41-40 }[/tex]

[tex]\bold{a-b=\sqrt{1} }[/tex]

[tex]\bold{a-b=1 }[/tex]••••••••(equation II)

Now,combine the equation I and equation II

we,get

[tex]\bold{a+b+a-b=9+1 }[/tex]

[tex]\bold{a+\cancel{b}+a\cancel{-b}=10 }[/tex]

[tex]\bold{ 2a=10 }[/tex]

[tex]\bold{a=\dfrac{10}{2} }[/tex]

[tex]\blue{\boxed{ a=5 }}[/tex]

Then,

put the value of a in equation II.

we get that,

[tex]\bold{5-b=1 }[/tex]

[tex]\bold{b+1=5 }[/tex]

[tex]\bold{b=5-1 }[/tex]

[tex]\bold{\boxed{\blue{b=4}} }[/tex]

so,

The two number is 5 and 4.