Answer:
[tex]A \cup C=\left \{ \text{q, s, u, v, w, x, y, z} \right \}[/tex]
Step-by-step explanation:
Given: [tex]\text{U}=\left \{\text{q, r, s, t, u, v, w, x, y, z} \right \}[/tex], [tex]\text{A}=\left \{\text{q, s, u, w, y} \right \}[/tex], [tex]\text{B}=\left \{\text{q, s, y, z} \right \}[/tex],
[tex]\text{C}=\left \{\text{v, w, x, y, z} \right \}[/tex].
To find: The elements in the set [tex]A \cup C[/tex].
Solution:
We have,
[tex]\text{U}=\left \{\text{q, r, s, t, u, v, w, x, y, z} \right \}[/tex]
[tex]\text{A}=\left \{\text{q, s, u, w, y} \right \}[/tex]
[tex]\text{B}=\left \{\text{q, s, y, z} \right \}[/tex]
[tex]\text{C}=\left \{\text{v, w, x, y, z} \right \}[/tex]
Now, [tex]A \cup C[/tex] will contain all the elements in the set [tex]A[/tex] and all the elements in set [tex]C[/tex].
So, [tex]A \cup C=\left \{ \text{q, s, u, v, w, x, y, z} \right \}[/tex].
Hence, [tex]A \cup C=\left \{ \text{q, s, u, v, w, x, y, z} \right \}[/tex].