Respuesta :

Answer:

2a^4 +12a

[tex]2 {a}^{4} + 12 { a}^{2} \\ \times \times [/tex]

Answer:

C-D is: [tex]\mathbf{4b^4 -2a^b^2 -6b^4}[/tex]

Step-by-step explanation:

We are given:

[tex]C = 7a^4+ + 5a^2b2 - 3b^4\\D=5a^4 + 7a^2b^2 + 3b^4[/tex]

We need to find C-D.

Finding C-D we actually have to subtract D from C

So, finding C-D

[tex]C-D\\= 7a^4+ + 5a^2b2 - 3b^4-(5a^4 + 7a^2b^2 + 3b^4)\\=7a^4+ + 5a^2b2 - 3b^4-5a^4-7a^2b^2-3b^4[/tex]

Now, combining the like terms.

Like terms are those that have same variables and exponents.

In our case, [tex]7a^4\: and\: 3b^4, 5a^2b^2\: and\: -7a^b^2, -3b^4\:and\:-3b^4[/tex]

[tex]=7a^4 - 3b^4+5a^2b^2 -7a^b^2 -3b^4-3b^4\\=4b^4 -2a^b^2 -6b^4[/tex]

So, we get C-D is: [tex]\mathbf{4b^4 -2a^b^2 -6b^4}[/tex]